STATISZTIKA
General information:
Citations mentioned below are collected from the SCOPUS (www.scopus.com) and from the Thomson ISI databases. Number of citations are given as all of the citation hits and in brackets the number of independent citations. In the list of the citing articles the dependent citations are labelled by asterisks. Updated on February 23, 2009

Format: Molecular Immunology
1. Study of the subunit interactions in myosin phosphatase by surface plasmon resonance
Toth A, Kiss E, Herberg FW, Gergely P, Hartshorne DJ and Erdodi F

IF (2000): 2,852

Citations: 37 (14)

Ref Type: Serial (Book,Monograph)

2.
Phosphorylation of MYPT1 by protein kinase C attenuates interaction with PP1 catalytic subunit and the 20 kDa light chain of myosin
Toth A, Kiss E, Gergely P, Walsh MP, Hartshorne DJ and Erdodi F

IF (2000): 3,440

Citations: 24 (6)

3.

Thapsigargin binds to and inhibits the cloned vanilloid receptor-1
Toth A, Kedei N, Szabo T, Wang Y and Blumberg PM

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS (2002)
293 (2): 777-782.

IF (2002): 2,935

Citation: 16 (2)

11. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006. Ref Type: Serial (Book,Monograph)

4. High affinity antagonists of the vanilloid receptor

MOLECULAR PHARMACOLOGY (2002)

IF (2002): 5,480

Citations: 58 (27)

Ref Type: Serial (Book,Monograph)

5.
High-affinity partial agonists of the vanilloid receptor.
Wang Y, Toth A, Tran R, Szabo T, Welter JD, Blumberg PM, Lee J, Kang SU, Lim JO and Lee J.
MOLECULAR PHARMACOLOGY (2003)
64(2): 325-33.

IF (2003): 5,650

Citations: 22 (13)

6.

IF (2003): 4,820

Citations: 57 (19)

29. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006. Ref Type: Serial (Book,Monograph)

7.

Arachidonyl dopamine as a ligand for the vanilloid receptor VR1 of the rat.

Toth A, Kedei N, Wang Y and Blumberg PM.

LIFE SCIENCES (2003)

IF (2003): 1,944

Citations: 27 (2)

8.

Calpain-1-dependent degradation of troponin I mutants found in familial hypertrophic cardiomyopathy.
Barta J, Toth A, Jaquet K, Redlich A, Edes I and Papp Z.
MOLECULAR AND CELLULAR BIOCHEMISTRY (2003)

IF (2003): 1,763

Citations: 9 (4)

9. **Design of a high affinity competitive antagonist of the vanilloid receptor selective for the plasma membrane expressed receptor population.**

Tóth A, Blumberg PM, Chen Z and Kozikowski AP.

MOLECULAR PHARMACOLOGY (2004)

IF (2004): 5,080

Citations: 22 (7)

13. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006. Ref Type: Serial (Book,Monograph)

N-[4-(Methylsulfonylamino)benzyl]thiourea analogues as vanilloid receptor antagonists: analysis of structure–activity relationships for the ‘C-Region’

IF (2004): 2,018

Citations: 12 (2)

 Ref Type: Serial (Book,Monograph)

 Ref Type: Serial (Book,Monograph)

5. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006.
 Ref Type: Serial (Book,Monograph)

11.
Calpain-1-sensitive myofibrillar proteins of the human myocardium
MOLECULAR AND CELLULAR BIOCHEMISTRY (2005)
278(1-2): 1-8

IF (2005): 1,681
Citations: 12 (0)

Ref Type: Serial (Book,Monograph)

12. Structure–activity relationships of simplified resiniferatoxin analogues with potent VR1 agonism elucidates an active conformation of RTX for VR1 binding

IF (2004): 2,018

Citations: 6 (3)

13.
Molecular determinants of vanilloid sensitivity in TRPV1
279(19): 20283-20295

IF (2004): 6,355

Citations: 93 (13)

30. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006. Ref Type: Serial (Book,Monograph)

31. Bevan, S. Chapter 7 TRP Channels as Thermosensors. Oh, U. 57, 199-239. 2006. Ref Type: Serial (Book,Monograph)

Characterization of the interaction of ingenol 3-angelate with protein kinase C
Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM
CANCER RESEARCH (2004) 64(9):3243-3255

IF (2004): 7,690

Citations: 31 (4)

15.

Lee, J., Kang, SU., Choi, HK., Lee, J., Lim, JO., Kil, MJ., Jin, MK., Kim, KP., Chung, SJ., Ha, HJ., Kim, YH., Pearce, LV., Tran, R., Lundberg, DJ., Wang, Y., Toth, A., Blumberg, PM.

BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS (2004)
14: 2291-2297

IF (2004): 2,333

Citations: 5 (3)

16. PKC delta associates with and phosphorylates RasGRP3 in response to phorbol esters.
Brodie, C., Steinhart, R., Kazimirsky, G., Rubinfeld, H., Hyman, T., Ayres, J.A., Hur, G.M.,
Toth, A., Yang, D., Garfield, S.H., Stone, J.C., and Blumberg, P.M.
MOLECULAR PHARMACOLOGY (2004)
66(1):76-84.

IF (2004): 5,080

Citations: 21 (7)

RasGRP3 by Phosphorylation of Thr-133 Is Required for B Cell Receptor-Mediated Ras Activation. Proc
Natl Acad Sci USA 101: 16612-16617.

384: 449-459.

in Vitro Among C1 Domains of Protein Kinase C (PKC) Isoforms ? and ? As Well As Selectivity for

RasGRP1 Pathway Directs Ras Activation Upon Antigen Receptor Stimulation of T Cells. Mol Cell Biol
25: 4426-4441.

8. Schultess J, Danielewski O and Smolenksi A P (2005) Rap1GAP2 Is a New GTPase-Activating Protein of

Threonine 133 Provides a Mechanistic Link Between PKC and Ras Signaling Systems in B Cells. Blood
105: 3648-3654.

Anikster Y, Kazimirsky G, Sarid R and Brodie C (2006) Related to Testes-Specific, Vespid, and
Pathogenesis Protein-1 (RTVP-1) Is Overexpressed in Gliomas and Regulates the Growth, Survival, and

17. Analysis of structure-activity relationships with the N-(3-acyloxy-2-benzylpropyl)-[4-(methylsulfonylamino)benzyl]thiourea template for vanilloid receptor 1 antagonism.

Citations: 9 (1)

4. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006. Ref Type: Serial (Book,Monograph)

Interaction between PKCµ and the vanilloid receptor type 1
279(51): 53674-82.

Citations: 35 (5)

10. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006. RefType: Serial (Book,Monograph)

19. Different vanilloid agonists cause different patterns of calcium response in CHO cells heterologously expressing rat TRPV1
Toth, A., Wang, Y., Kedei, N., Tran, R., Pearce, L.V., Kang, S.U., Jin, M.K., Choi, H.K., Lee, J., Blumberg, P.M.

Citations: 19 (5)

3. Appendino, G. and Szallasi, A. 4 Clinically Useful Vanilloid Receptor TRPV1 Antagonists: Just around the Corner (or too Early to Tell)? King, F. D. and Lawton, G. 44, 145-180. 2006.
Ref Type: Serial (Book,Monograph)

20.

Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain
Toth, A., Boczan, J., Kedei, N., Lizanecz, E., Bagi, Z., Papp, Z., Edes, I., Csiba, L.,
Blumberg, PM.

MOLECULAR BRAIN RESEARCH (2005)
135: 162-168

Citations: 57 (0)

1. Hu DE, Easton A S and Fraser P A (2005) TRPV1 Activation Results in Disruption of the Blood-Brain

 Future 30: 747-753.

 Deprivation Induced by Neonatal Capsaicin Treatment Induces Changes in Rat Brain and Behaviour of

 Modulation of Human TRPV1 Receptor Activity by Extracellular Protons and Host Cell Expression

 Immunohistochemical Localization of Cannabinoid Type 1 and Vanilloid Transient Receptor Potential
 Vanilloid Type 1 Receptors in the Mouse Brain. Neuroscience 139: 1405-1415.

 GABA-Ergic IPSCs in Hippocampal Cell Cultures. Neurophysiology 38: 308-311.

 Receptor Potential Vanilloid 1-Expressing Primary Sensory Projections to Sacral Autonomic

 591.

 Microglial Cell Death in Vivo and in Vitro Via Ca2+-Mediated Mitochondrial Damage and Cytochrome c

21.
Peroxynitrite-induced α-actinin nitration and contractile alterations in isolated human myocardial cells
CARDIOVASCULAR RESEARCH (2005)
67: 225-233

Citations: 27 (6)

Analysis of structure activity relationships for the "A-region" of N-(4-t-butylbenzyl)-4'-[4-(methylsulfonylamino)benzyl]thiourea analogues as TRPV1 receptor antagonists.

Citations: 10 (3)

Analysis of structure activity relationships for the "B-region" of N-(4-t-butylbenzyl)-4'-(4-(methylsulfonylamino)benzyl)thiourea analogues as TRPV1 receptor antagonists.

Citations: 4 (1)

Type 2 Diabetic Mice have Increased Arteriolar Tone and Blood Pressure. Enhanced Release of COX-2-derived Constrictor Prostaglandins.

Bagi, Z., Erdei, N., Toth, A., Li, W., Hintze, T.H., Koller, A., Kaley, G.

Citations: 27 (4)

Phosphorylation dependent desensitization of vanilloid receptor-1 (TRPV1) function in rat skeletal muscle arterioles and in CHO-TRPV1 cells by anandamide.
Lizanecz, E., Bagi, Z., Pásztor, E.T., Papp, Z., Édes, I., Kedei, N., Blumberg, P.M., Tóth, A.
MOLECULAR PHARMACOLOGY (2006)
69(3):1015-1023

IF (2006): 4,469
Citations: 12 (2)

Mistyping angiotensinogen M235T alleles
Lizanecz, E., Pásztor, E.T., Mohácsi, A., Papp, Z., Édes, I., Tóth, A.

IF (2006): 3,177

Citations: 4 (0)

27. **Kinetics of penetration influence the apparent potency of vanilloids on TRPV1**

Molecular Pharmacology (2006)
69(4):1166-1173

IF (2006): 4,469

Citations: 8 (1)

28.
High Fat Diet-Induced Reduction in Nitric Oxide-Dependent Arteriolar Dilation in Rats. Role of Xanthine Oxidase-Derived Superoxide Anion
Erdei, N., Tóth, A., Pásztor, E.T., Papp, Z., Édes, I., Koller, A., Bagi, Z

Citations: 14 (1)

29. Activation of the poly(ADP-ribose) polymerase pathway in human heart failure
MOLECULAR MEDICINE (2006)
12(7-8):143-52.

IF (2006): 2.708

Citations: 6 (3)

30.

α-Substituted N-(4-t-Butylbenzyl)-N’-[4-(methysulfonylamino)benzyl]thiourea analogues as potent and stereospecific TRPV1 antagonists.

IF (2007): 2.662

Citations: 4 (3)

31. Heteroduplex analysis using flow cytometric microbead assays to detect deletions, insertions and single-strand lesions.

CYTOMETRY: PART A (2008)
73(3):238-45.

IF (2007): 2.798

Citations: 0 (0)
32. Stereospecific High-affinity TRPV1 Antagonists: Chiral N-(2-Benzyl-3-pivaloyloxypropyl) 2-[4-(methylsulfonylamino)phenyl]propionamide Analogues.

Citations: 3 (0)

Differential modulation of agonist and antagonist structure activity relations for rat TRPV1 by cyclosporin A and other protein phosphatase inhibitors.

Pearce, L.V., Toth, A., Ryu, H.C., Kang, D.W., Choi, H.K., Jin, M.K., Lee, J., Blumberg, P.M.

IF (2007): 2.161

Citations: 1 (0)

34. Oxidation of myofilament protein sulphhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes.
ANTIOXIDANTS & REDOX SIGNALING (2008)
10(7):1175-84.

IF (2007): 5.484
Citations: 0 (0)
35.
Tissue specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1 (TRPV1).
MOLECULAR PHARMACOLOGY (2008)
73(5):1405-12

IF (2007): 3.622

Citations: 0 (0)
36.
Conformationally constrained analogues of N’-(4-tert-butylbenzyl)-N-(4-
methylsulfonylaminobenzyl)thiourea as TRPV1 antagonists
Lim, J.O., Jin, M.K., Ryu, H.C., Knag, D.W., Pearce, L.V., Tran, R., Toth, A., Lee, J., and Blumberg, P.M.
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY (2009)
44:322-331.

IF (2007): 2.301

Citations: 0 (0)
37.
Late-stage alterations in myofibrillar contractile function in a transgenic mouse model of dilated cardiomyopathy (Tgalphaq*44).

IF (2007): 5.246
Citations: 0 (0)
Anandamide and the vanilloid receptor 1 (TRPV1).
Tóth A, Blumberg PM, Boczán J
VITAMINS AND HORMONES (2009)
In press

IF (2007): 3.889

Citations: 0 (0)
39.
The peroxynitrite evoked contractile depression can be partially reversed by antioxidants in human cardiomyocytes.
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE (2009)
In press

IF (2007): 6.807

Citations: 0 (0)
Protein kinase C contributes to the maintenance of contractile force in human ventricular cardiomyocytes

IF (2007): 5.581

Citations: 0 (0)
Non-vanillyl resiniferatoxin analogues as potent and metabolically stable transient receptor potential vanilloid 1 agonists.

IF (2007): 2.662
Citations: 0 (0)
<table>
<thead>
<tr>
<th>Közlemények száma:</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact factor összesen:</td>
<td>157.556</td>
</tr>
<tr>
<td>Hivatkozás összesen:</td>
<td>689 (ebből önhivatkozás: 161)</td>
</tr>
<tr>
<td>Független hivatkozás:</td>
<td>528</td>
</tr>
</tbody>
</table>